Abstract
Abstract
Purpose
Phase analysis can assess left ventricular dyssynchrony. The independent prognostic value of phase variables over positron emission tomography myocardial perfusion imaging (PET-MPI) variables including myocardial flow reserve (MFR) has not been studied. The aim of this study was to explore the prognostic value of phase variables for predicting mortality over standard PET-MPI variables.
Methods
Consecutive patients who underwent pharmacological stress-rest 82Rb PET study were enrolled. All PET-MPI variables including phase variables (phase entropy, phase bandwidth, and phase standard deviation) were automatically obtained by QPET software (Cedars-Sinai, Los Angeles, CA). Cox proportional hazard analyses were used to assess associations with all-cause mortality (ACM).
Results
In a total of 3963 patients (median age 71 years; 57% male), 923 patients (23%) died during a median follow-up of 5 years. Annualized mortality rates increased with stress phase entropy, with a 4.6-fold difference between the lowest and highest decile groups of entropy (2.6 vs. 12.0%/year). Abnormal stress phase entropy (optimal cutoff value, 43.8%) stratified ACM risk in patients with normal and impaired MFR (both p < 0.001). Among three phase variables, only stress phase entropy was significantly associated with ACM after the adjustment of standard clinical and PET-MPI variables including MFR and stress-rest change of phase variables, whether modeled as binary variables (adjusted hazard ratio, 1.44 for abnormal entropy [> 43.8%]; 95%CI, 1.18–1.75; p < 0.001) or continuous variables (adjusted hazard ratio, 1.05 per 5% increase; 95%CI, 1.01–1.10; p = 0.030). The addition of stress phase entropy to the standard PET-MPI variables significantly improved the discriminatory power for ACM prediction (p < 0.001), but the other phase variables did not (p > 0.1).
Conclusion
Stress phase entropy is independently and incrementally associated with ACM beyond standard PET-MPI variables including MFR. Phase entropy can be obtained automatically and included in clinical reporting of PET-MPI studies to improve patient risk prediction.
Funder
National Heart, Lung, and Blood Institute
National Institute of Biomedical Imaging and Bioengineering
Cedars-Sinai Medical Center
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,General Medicine,Radiology, Nuclear Medicine and imaging,General Medicine