Immunohistochemical ERG positivity is associated with decreased PSMA expression and lower visibility in corresponding [68Ga]Ga-PSMA-11 PET scans of primary prostate cancer

Author:

Rupp Niels J.ORCID,Freiberger Sandra N.,Ferraro Daniela A.,Laudicella Riccardo,Heimer Jakob,Muehlematter Urs J.,Poyet Cédric,Moch Holger,Eberli Daniel,Rüschoff Jan H.,Burger Irene A.

Abstract

Abstract Purpose TMPRSS2:ERG gene fusion negatively regulates PSMA expression in prostate adenocarcinoma (PCa) cell lines. Therefore, immunohistochemical (IHC) ERG expression, a surrogate for an underlying ERG rearrangement, and PSMA expression patterns in radical prostatectomy (RPE) specimens of primary PCa, including corresponding PSMA-PET scans were investigated. Methods Two cohorts of RPE samples (total n=148): In cohort #1 (n=62 patients) with available RPE and preoperative [68Ga]Ga-PSMA-11 PET, WHO/ISUP grade groups, IHC-ERG (positive vs. negative) and IHC-PSMA expression (% PSMA-negative tumour area, PSMA%neg) were correlated with the corresponding SUVmax. In the second cohort #2 (n=86 patients) including RPE only, same histopathological parameters were evaluated. Results Cohort #1: PCa with IHC-ERG expression (35.5%) showed significantly lower IHC-PSMA expression and lower SUVmax values on the corresponding PET scans. Eight of 9 PCa with negative PSMA-PET scans had IHC-ERG positivity, and confirmed TMPRSS2::ERG rearrangement. In IHC-PSMA positive PCa, IHC-ERG positivity was significantly associated with lower SUVmax values. In cohort #2, findings of higher IHC-PSMA%neg and IHC-ERG expression was confirmed with only 0-10% PSMA%neg tumour areas in IHC-ERG-negative PCa. Conclusion IHC-ERG expression is significantly associated with more heterogeneous and lower IHC-PSMA tissue expression in two independent RPE cohorts. There is a strong association of ERG positivity in RPE tissue with lower [68Ga]Ga-PSMA-11 uptake on corresponding PET scans. Results may serve as a base for future biomarker development to enable tumour-tailored, individualized imaging approaches.

Funder

University of Zurich

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3