LY450139 Inhibited Ti-Particle-Induced Bone Dissolution via Suppressing Notch and NF-κB Signaling Pathways

Author:

Gao JijianORCID,Wu Peng,Chi Yingjun,Xu Hongyu,Zhao Yong,Song Nanyan,Mao Yuanqing

Abstract

AbstractAseptic loosening of the prosthesis caused by wear-particle-induced osteolysis is a long-term complication and one of the most common reasons for the failure of joint implants. The primary cause of aseptic loosening of the prosthesis is overactive bone resorption caused by wear-particle-activated osteoclasts in both direct and indirect ways. Therefore, drugs that can inhibit differentiation and bone resorption of osteoclasts need investigation as a potential therapeutic strategy to prevent and treat peri-prosthetic osteolysis and thereby prolong the service life of the prosthesis. This study has verified the potential inhibitory effect of LY450139 on inflammatory osteolysis induced by titanium particles in a mice skull model. In addition, we found that LY450139 inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis, bone resorption, and podosomal actin belt formation in a dose-dependent manner without evidence of cytotoxicity in vitro. In addition, LY450139 significantly decreased the expression of osteoclast-specific markers, including TRAP, CTSK, V-ATPase d2, CTR, DC-STAMP, NFATc1, and the downstream target gene Hes1 in Notch signaling pathway. Further investigation of the molecular mechanism demonstrated that LY450139 inhibited the formation of osteoclasts via inhibition of the NF-κB and Notch signaling pathways. In summary, LY450139 inhibited the formation of RANKL-mediated osteoclasts via NF-κB and Notch signaling and inhibited Ti particle-induced inflammatory osteolysis in vivo. LY450139 is a potential targeted drug for the treatment of peri-prosthetic osteolysis and other osteolytic disease associated with overactive osteoclasts.

Funder

The National Key R&D Program of China

The National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Orthopedics and Sports Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3