Variability Among Breast Cancer Risk Classification Models When Applied at the Level of the Individual Woman

Author:

Paige Jeremy S.,Lee Christoph I.,Wang Pin-Chieh,Hsu William,Brentnall Adam R.,Hoyt Anne C.,Naeim Arash,Elmore Joann G.ORCID

Abstract

Abstract Background Breast cancer risk models guide screening and chemoprevention decisions, but the extent and effect of variability among models, particularly at the individual level, is uncertain. Objective To quantify the accuracy and disagreement between commonly used risk models in categorizing individual women as average vs. high risk for developing invasive breast cancer. Design Comparison of three risk prediction models: Breast Cancer Risk Assessment Tool (BCRAT), Breast Cancer Surveillance Consortium (BCSC) model, and International Breast Intervention Study (IBIS) model. Subjects Women 40 to 74 years of age presenting for screening mammography at a multisite health system between 2011 and 2015, with 5-year follow-up for cancer outcome. Main Measures Comparison of model discrimination and calibration at the population level and inter-model agreement for 5-year breast cancer risk at the individual level using two cutoffs (≥ 1.67% and ≥ 3.0%). Key Results A total of 31,115 women were included. When using the ≥ 1.67% threshold, more than 21% of women were classified as high risk for developing breast cancer in the next 5 years by one model, but average risk by another model. When using the ≥ 3.0% threshold, more than 5% of women had disagreements in risk severity between models. Almost half of the women (46.6%) were classified as high risk by at least one of the three models (e.g., if all three models were applied) for the threshold of ≥ 1.67%, and 11.1% were classified as high risk for ≥ 3.0%. All three models had similar accuracy at the population level. Conclusions Breast cancer risk estimates for individual women vary substantially, depending on which risk assessment model is used. The choice of cutoff used to define high risk can lead to adverse effects for screening, preventive care, and quality of life for misidentified individuals. Clinicians need to be aware of the high false-positive and false-negative rates and variation between models when talking with patients.

Publisher

Springer Science and Business Media LLC

Subject

Internal Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3