Abstract
AbstractWe give an explicit formula for the expectation of the number of real lines on a random invariant cubic surface, i.e., a surface $$Z\subset {\mathbb {R}}{\mathrm {P}}^3$$
Z
⊂
R
P
3
defined by a random gaussian polynomial whose probability distribution is invariant under the action of the orthogonal group O(4) by change of variables. Such invariant distributions are completely described by one parameter $$\lambda \in [0,1]$$
λ
∈
[
0
,
1
]
and as a function of this parameter the expected number of real lines equals: $$\begin{aligned} E_\lambda =\frac{9(8\lambda ^2+(1-\lambda )^2)}{2\lambda ^2+(1-\lambda )^2}\left( \frac{2\lambda ^2}{8\lambda ^2+(1-\lambda )^2}-\frac{1}{3}+\frac{2}{3}\sqrt{\frac{8\lambda ^2+(1-\lambda )^2}{20\lambda ^2+(1-\lambda )^2}}\right) . \end{aligned}$$
E
λ
=
9
(
8
λ
2
+
(
1
-
λ
)
2
)
2
λ
2
+
(
1
-
λ
)
2
2
λ
2
8
λ
2
+
(
1
-
λ
)
2
-
1
3
+
2
3
8
λ
2
+
(
1
-
λ
)
2
20
λ
2
+
(
1
-
λ
)
2
.
This result generalizes previous results by Basu et al. (Math Ann 374(3–4):1773–1810, 2019) for the case of a Kostlan polynomial, which corresponds to $$\lambda =\frac{1}{3}$$
λ
=
1
3
and for which $$E_{\frac{1}{3}}=6\sqrt{2}-3.$$
E
1
3
=
6
2
-
3
.
Moreover, we show that the expectation of the number of real lines is maximized by random purely harmonic cubic polynomials, which corresponds to the case $$\lambda =1$$
λ
=
1
and for which $$E_1=24\sqrt{\frac{2}{5}}-3$$
E
1
=
24
2
5
-
3
.
Funder
Scuola Internazionale Superiore di Studi Avanzati
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Science & Business Media, Berlin (2009)
2. Ait El Manssour, R., Lerario, A.: Probabilistic enumerative geometry over $$p$$-adic numbers: linear spaces on complete intersections (2020). arXiv:2011.07558
3. Allcock, D., Carlson, J.A., Toledo, D.: Hyperbolic geometry and moduli of real cubic surfaces. Ann. Sci. Éc. Norm. Supér. (4) 43(1), 65–115 (2010). https://doi.org/10.24033/asens.2116
4. Basu, S., Lerario, A., Lundberg, E., Peterson, C.: Random fields and the enumerative geometry of lines on real and complex hypersurfaces. Math. Ann. 374(3–4), 1773–1810 (2019). https://doi.org/10.1007/s00208-019-01837-0
5. Beauville, A.: Determinantal hypersurfaces. Mich. Math. J. 48(1), 39–64 (2000). https://doi.org/10.1307/mmj/1030132707
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献