Real Lines on Random Cubic Surfaces

Author:

Ait El Manssour Rida,Belotti Mara,Meroni ChiaraORCID

Abstract

AbstractWe give an explicit formula for the expectation of the number of real lines on a random invariant cubic surface, i.e., a surface $$Z\subset {\mathbb {R}}{\mathrm {P}}^3$$ Z R P 3 defined by a random gaussian polynomial whose probability distribution is invariant under the action of the orthogonal group O(4) by change of variables. Such invariant distributions are completely described by one parameter $$\lambda \in [0,1]$$ λ [ 0 , 1 ] and as a function of this parameter the expected number of real lines equals: $$\begin{aligned} E_\lambda =\frac{9(8\lambda ^2+(1-\lambda )^2)}{2\lambda ^2+(1-\lambda )^2}\left( \frac{2\lambda ^2}{8\lambda ^2+(1-\lambda )^2}-\frac{1}{3}+\frac{2}{3}\sqrt{\frac{8\lambda ^2+(1-\lambda )^2}{20\lambda ^2+(1-\lambda )^2}}\right) . \end{aligned}$$ E λ = 9 ( 8 λ 2 + ( 1 - λ ) 2 ) 2 λ 2 + ( 1 - λ ) 2 2 λ 2 8 λ 2 + ( 1 - λ ) 2 - 1 3 + 2 3 8 λ 2 + ( 1 - λ ) 2 20 λ 2 + ( 1 - λ ) 2 . This result generalizes previous results by Basu et al. (Math Ann 374(3–4):1773–1810, 2019) for the case of a Kostlan polynomial, which corresponds to $$\lambda =\frac{1}{3}$$ λ = 1 3 and for which $$E_{\frac{1}{3}}=6\sqrt{2}-3.$$ E 1 3 = 6 2 - 3 . Moreover, we show that the expectation of the number of real lines is maximized by random purely harmonic cubic polynomials, which corresponds to the case $$\lambda =1$$ λ = 1 and for which $$E_1=24\sqrt{\frac{2}{5}}-3$$ E 1 = 24 2 5 - 3 .

Funder

Scuola Internazionale Superiore di Studi Avanzati

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probabilistic bounds on best rank-1 approximation ratio;Linear and Multilinear Algebra;2024-03-03

2. String theory and theory of everything: Review research;Scientific Herald of Uzhhorod University Series Physics;2023-12-01

3. Lines on p-adic and real cubic surfaces;Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg;2023-09-16

4. Probabilistic enumerative geometry over p-adic numbers: linear spaces on complete intersections;Annales Henri Lebesgue;2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3