Vortex dynamics impact on the wake flow of a marine rudder with leading-edge tubercles

Author:

Troll MoritzORCID,Shi WeichaoORCID,Stark CallumORCID,Atlar MehmetORCID

Abstract

AbstractThe impact of two tubercle leading-edge (TLE) modifications on the turbulent wake of a reference marine rudder at Reynolds number 2.26 × 106 was analysed numerically using Detached Eddy Simulations (DES). This paper studies the counter-rotating vortex pair formation around the TLE and their impact on the wake structures behind the rudder to find out if the vortex interaction can accelerate the tip vortex dissipation. According to the results, the tubercles enhanced lift for angles of attack (AOA) 10º and above, but at the cost of a drag penalty which reduced the rudders’ lift-to-drag ratio. The formation of the distinctive stream-wise counter-rotating vortex pairs occurred behind the tubercles, which then interacted with the dominant tip vortex. Due to the inherent spanwise flow component of finite-span lifting surfaces the counter-rotating vortex pairs were generated at unequal strength and soon merged into singular vortices co-rotating with the tip vortex. The vortices facilitated flow compartmentalisation over the rudder suction side which broke up the trailing-edge vortex sheet and confined the spanwise flow separation over the rudder surface as AOA increased. The tubercles confined flow separation closer to the rudder tip which reduced the lift generation in the tip area and minimised the initial tip vortex strength. Large elements of stream-wise counter-rotating vorticity formed around the localised stall cells of the TLE rudders that interacted with the tip vortex downstream, introducing elliptical instabilities further weakening the tip vortex and changing its trajectory.

Funder

BAE Systems

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Energy Engineering and Power Technology,Water Science and Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3