Abstract
AbstractWind energy industry is expanded to offshore and deep water sites, primarily due to the stronger and more consistent wind fields. Floating offshore wind turbine (FOWT) concepts involve new engineering and scientific challenges. A combination of waves, current, and wind loads impact the structures. Often under extreme cases, and sometimes in operational conditions, magnitudes of these loads are comparable with each other. The loads and responses may be large, and simultaneous consideration of the combined environmental loads on the response of the structure is essential. Moreover, FOWTs are often large structures and the load frequencies are comparable to the structural frequencies. This requires a fluid–structure–fluid elastic analysis which adds to the complexity of the problem. Here, we present a critical review of the existing approaches that are used to (i) estimate the hydrodynamic and aerodynamic loads on FOWTs, and (ii) to determine the structures’ motion and elastic responses due to the combined loads. Particular attention is given to the coupling of the loads and responses, assumptions made under each of the existing solution approaches, their limitations, and restrictions, where possible, suggestions are provided on areas where further studies are required.
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Energy Engineering and Power Technology,Water Science and Technology,Renewable Energy, Sustainability and the Environment
Reference185 articles.
1. Abedi H, Davidson L, Voutsinas S (2017) Enhancement of free vortex filament method for aerodynamic loads on rotor blades. J Solar Energy Eng 139:1–12
2. Adam F, Myland T, Dahlhaus F, Großmann J, (2014) Gicon®-TLP for wind turbines—the path of development. In: RENEW 2014, CRC Press, November 24–26, Lisbon, Portugal, pp 651–656
3. Ahn HJ, Shin H (2019) Model test and numerical simulation of OC3 SPAR type floating offshore wind turbine. Int J Naval Archit Ocean Eng 11:1–10
4. Aidun CK, Clausen JR (2010) Lattice-boltzmann method for complex flows. Ann Rev Fluid Mech 42:439–472
5. Aoki M, Srinivasamurthy S, Iijima K, Hara N, Ikoma T, Nihei Y (2018) Experimental investigation of negative damping effects for a TLP type offshore wind turbine. In: Proceedings of the ASME 2018 37th international conference on ocean, offshore and Arctic engineering, June 17–22, Madrid, pp 1–8
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献