Improved fuzzy clustering for image segmentation based on a low-rank prior

Author:

Zhang Xiaofeng,Wang Hua,Zhang Yan,Gao Xin,Wang Gang,Zhang Caiming

Abstract

AbstractImage segmentation is a basic problem in medical image analysis and useful for disease diagnosis. However, the complexity of medical images makes image segmentation difficult. In recent decades, fuzzy clustering algorithms have been preferred due to their simplicity and efficiency. However, they are sensitive to noise. To solve this problem, many algorithms using non-local information have been proposed, which perform well but are inefficient. This paper proposes an improved fuzzy clustering algorithm utilizing nonlocal self-similarity and a low-rank prior for image segmentation. Firstly, cluster centers are initialized based on peak detection. Then, a pixel correlation model between corresponding pixels is constructed, and similar pixel sets are retrieved. To improve efficiency and robustness, the proposed algorithm uses a novel objective function combining non-local information and a low-rank prior. Experiments on synthetic images and medical images illustrate that the algorithm can improve efficiency greatly while achieving satisfactory results.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Few-shot segmentation based on multi-level and cross-scale clustering;Connection Science;2024-02-29

2. Improved Fuzzy Based Segmentation with Hybrid Classification for Skin Disease Detection;Procedia Computer Science;2024

3. 基于加权滤波与核度量的鲁棒图像分割算法;Laser & Optoelectronics Progress;2024

4. Prediction and Analysis of Next Website Request by Using Fuzzy Approach;2023 First International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI);2023-10-19

5. Quadratic surface center-based possibilistic fuzzy clustering with kernel metric and local information for image segmentation;Multimedia Tools and Applications;2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3