Author:
Zhou Qiu,Li Manyi,Zeng Qiong,Aristidou Andreas,Zhang Xiaojing,Chen Lin,Tu Changhe
Abstract
AbstractProfessional dance is characterized by high impulsiveness, elegance, and aesthetic beauty. In order to reach the desired professionalism, it requires years of long and exhausting practice, good physical condition, musicality, but also, a good understanding of choreography. Capturing dance motions and transferring them to digital avatars is commonly used in the film and entertainment industries. However, so far, access to high-quality dance data is very limited, mainly due to the many practical difficulties in capturing the movements of dancers, making it prohibitive for large-scale data acquisition. In this paper, we present a model that enhances the professionalism of amateur dance movements, allowing movement quality to be improved in both spatial and temporal domains. Our model consists of adance-to-music alignmentstage responsible for learning the optimal temporal alignment path between dance and music, and adance-enhancementstage that injects features of professionalism in both spatial and temporal domains. To learn a homogeneous distribution and credible mapping between the heterogeneous professional and amateur datasets, we generate amateur data from professional dances taken from the AIST++ dataset. We demonstrate the effectiveness of our method by comparing it with two baseline motion transfer methods via thorough qualitative visual controls, quantitative metrics, and a perceptual study. We also provide temporal and spatial module analysis to examine the mechanisms and necessity of key components of our framework.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition
Reference60 articles.
1. Hanna, J. L. The Performer-Audience Connection: Emotion to Metaphor in Dance and Society. University of Texas Press, 1983.
2. Aristidou, A.; Shamir, A.; Chrysanthou, Y. Digital dance ethnography. Journal on Computing and Cultural Heritage Vol. 12, No. 4, Article No. 29, 2020.
3. Li, R. L.; Yang, S.; Ross, D. A.; Kanazawa, A. AI choreographer: Music conditioned 3D dance generation with AIST. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 13381–13392, 2021.
4. Chen, K.; Tan, Z.; Lei, J.; Zhang, S. H.; Guo, Y. C.; Zhang, W.; Hu, S. M. ChoreoMaster: Choreography-oriented music-driven dance synthesis. ACM Transactions on Graphics Vol. 40, No. 4, Article No. 145, 2021.
5. Butterworth, J. Dance Studies: The Basics. Routledge Press, 2011.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献