Correlation-aware probabilistic data summarization for large-scale multi-block scientific data visualization

Author:

Yang Yang,Lu Kecheng,Wu Yu,Wang Yunhai,Cao Yi

Abstract

AbstractIn this paper, we propose a correlation-aware probabilistic data summarization technique to efficiently analyze and visualize large-scale multi-block volume data generated by massively parallel scientific simulations. The core of our technique is correlation modeling of distribution representations of adjacent data blocks using copula functions and accurate data value estimation by combining numerical information, spatial location, and correlation distribution using Bayes’ rule. This effectively preserves statistical properties without merging data blocks in different parallel computing nodes and repartitioning them, thus significantly reducing the computational cost. Furthermore, this enables reconstruction of the original data more accurately than existing methods. We demonstrate the effectiveness of our technique using six datasets, with the largest having one billion grid points. The experimental results show that our approach reduces the data storage cost by approximately one order of magnitude compared to state-of-the-art methods while providing a higher reconstruction accuracy at a lower computational cost.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Reference41 articles.

1. Ahrens, J.; Hendrickson, B.; Long, G.; Miller, S.; Ross, R.; Williams, D. Data intensive science in the Department of Energy. Technical Report, LA-UR-10-07088. Los Alamos National Laboratory, 2010.

2. Nowell, L. Science at extreme scale: Architectural challenges and opportunities. 2014. Available at https://www.mcs.anl.gov/∼hereld/doecgf2014/slides/ScienceAtExtremeScale_DOECGF_Nowell_140424v2.pdf.

3. Luo, A.; Kao, D.; Pang, A. Visualizing spatial distribution data sets. In: Proceedings of the Symposium on Data Visualisation, 29–38, 2003.

4. Kniss, J. M.; Van Uitert, R.; Stephens, A.; Li, G.; Tasdizen, T.; Hansen, C. Statistically quantitative volume visualization. In: Proceedings of the IEEE Visualization, 287–294, 2005.

5. Potter, K.; Krüger, J.; Johnson, C. Towards the visualization of multi-dimensional stochastic distribution data. In: Proceedings of the International Conference on Computer Graphics and Visualization, 2008. Available at http://www.sci.utah.edu/publications/Pot2008a/CGV08-Potter-Kruger-Johnson.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3