Author:
Liu Chenyi,Chen Fei,Deng Lu,Yi Renjiao,Zheng Lintao,Zhu Chenyang,Wang Jia,Xu Kai
Abstract
AbstractThe point pair feature (PPF) is widely used for 6D pose estimation. In this paper, we propose an efficient 6D pose estimation method based on the PPF framework. We introduce a well-targeted down-sampling strategy that focuses on edge areas for efficient feature extraction for complex geometry. A pose hypothesis validation approach is proposed to resolve ambiguity due to symmetry by calculating the edge matching degree. We perform evaluations on two challenging datasets and one real-world collected dataset, demonstrating the superiority of our method for pose estimation for geometrically complex, occluded, symmetrical objects. We further validate our method by applying it to simulated punctures.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献