Bin-scanning: Segmentation of X-ray CT volume of binned parts using Morse skeleton graph of distance transform

Author:

Yamauchi Yuta,Yatagawa Tatsuya,Ohtake Yutaka,Suzuki Hiromasa

Abstract

AbstractX-ray CT scanners, due to the transmissive nature of X-rays, have enabled the non-destructive evaluation of industrial products, even inside their bodies. In light of its effectiveness, this study introduces a new approach to accelerate the inspection of many mechanical parts with the same shape in a bin. The input to this problem is a volumetric image (i.e., CT volume) of many parts obtained by a single CT scan. We need to segment the parts in the volume to inspect each of them; however, random postures and dense contacts of the parts prohibit part segmentation using traditional template matching. To address this problem, we convert both the scanned volumetric images of the template and the binned parts to simpler graph structures and solve a subgraph matching problem to segment the parts. We perform a distance transform to convert the CT volume into a distance field. Then, we construct a graph based on Morse theory, in which graph nodes are located at the extremum points of the distance field. The experimental evaluation demonstrates that our fully automatic approach can detect target parts appropriately, even for a heap of 50 parts. Moreover, the overall computation can be performed in approximately 30 min for a large CT volume of approximately 2000×2000×1000 voxels.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3