1. Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning Vol. 20, 273–297, 1995.
2. Bagarinao, E.; Kurita, T.; Higashikubo, M.; Inayoshi, H. Adapting SVM image classifiers to changes in imaging conditions using incremental SVM: An application to car detection. In: Computer Vision-ACCV 2009. Lecture Notes in Computer Science, Vol. 5996. Zha, H.; Taniguchi, R.; Maybank, S. Eds. Springer Berlin Heidelberg, 363–372, 2010.
3. Guo, Y. Q.; Jia, X. P.; Paull, D. Effective sequential classifier training for SVM-based multitemporal remote sensing image classification. arXiv preprint arXiv:1706.04719, 2017.
4. Hinton, G. E.; Osindero, S.; Teh, Y. W. A fast learning algorithm for deep belief nets. Neural Computation Vol. 18, No. 7, 1527–1554, 2006.
5. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 8, 1798–1828, 2013.