Kernel-blending connection approximated by a neural network for image classification

Author:

Liu Xinxin,Zhang Yunfeng,Bao Fangxun,Shao Kai,Sun Ziyi,Zhang Caiming

Abstract

AbstractThis paper proposes a kernel-blending connection approximated by a neural network (KBNN) for image classification. A kernel mapping connection structure, guaranteed by the function approximation theorem, is devised to blend feature extraction and feature classification through neural network learning. First, a feature extractor learns features from the raw images. Next, an automatically constructed kernel mapping connection maps the feature vectors into a feature space. Finally, a linear classifier is used as an output layer of the neural network to provide classification results. Furthermore, a novel loss function involving a cross-entropy loss and a hinge loss is proposed to improve the generalizability of the neural network. Experimental results on three well-known image datasets illustrate that the proposed method has good classification accuracy and generalizability.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Reference33 articles.

1. Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning Vol. 20, 273–297, 1995.

2. Bagarinao, E.; Kurita, T.; Higashikubo, M.; Inayoshi, H. Adapting SVM image classifiers to changes in imaging conditions using incremental SVM: An application to car detection. In: Computer Vision-ACCV 2009. Lecture Notes in Computer Science, Vol. 5996. Zha, H.; Taniguchi, R.; Maybank, S. Eds. Springer Berlin Heidelberg, 363–372, 2010.

3. Guo, Y. Q.; Jia, X. P.; Paull, D. Effective sequential classifier training for SVM-based multitemporal remote sensing image classification. arXiv preprint arXiv:1706.04719, 2017.

4. Hinton, G. E.; Osindero, S.; Teh, Y. W. A fast learning algorithm for deep belief nets. Neural Computation Vol. 18, No. 7, 1527–1554, 2006.

5. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 35, No. 8, 1798–1828, 2013.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Building Damage Assessment Using Feature Concatenated Siamese Neural Network;IEEE Access;2024

2. Colorectal Cancer Prediction using Deep Learning;2023 2nd Zimbabwe Conference of Information and Communication Technologies (ZCICT);2023-11-02

3. Table of Contents;2023 2nd Zimbabwe Conference of Information and Communication Technologies (ZCICT);2023-11-02

4. Sub-network modeling and integration for low-light enhancement of aerial images;Optical and Quantum Electronics;2023-09-09

5. A representation learning framework for stock movement prediction;Applied Soft Computing;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3