CLIP-Flow: Decoding images encoded in CLIP space

Author:

Ma Hao,Li Ming,Yang Jingyuan,Patashnik Or,Lischinski Dani,Cohen-Or Daniel,Huang Hui

Abstract

AbstractThis study introduces CLIP-Flow, a novel network for generating images from a given image or text. To effectively utilize the rich semantics contained in both modalities, we designed a semantics-guided methodology for image- and text-to-image synthesis. In particular, we adopted Contrastive Language-Image Pretraining (CLIP) as an encoder to extract semantics and StyleGAN as a decoder to generate images from such information. Moreover, to bridge the embedding space of CLIP and latent space of StyleGAN, real NVP is employed and modified with activation normalization and invertible convolution. As the images and text in CLIP share the same representation space, text prompts can be fed directly into CLIP-Flow to achieve text-to-image synthesis. We conducted extensive experiments on several datasets to validate the effectiveness of the proposed image-to-image synthesis method. In addition, we tested on the public dataset Multi-Modal CelebA-HQ, for text-to-image synthesis. Experiments validated that our approach can generate high-quality text-matching images, and is comparable with state-of-the-art methods, both qualitatively and quantitatively.

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. Radford, A.; Kim, J.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning transferable visual models from natural language supervision. In: Proceedings of the 38th International Conference on Machine Learning, 8748–8763, 2021.

2. Patashnik, O.; Wu, Z.; Shechtman, E.; Cohen-Or, D.; Lischinski, D. StyleCLIP: Text-driven manipulation of StyleGAN imagery. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2065–2074, 2021.

3. Gal, R.; Patashnik, O.; Maron, H.; Bermano, A. H.; Chechik, G.; Cohen-Or, D. StyleGAN-NADA: CLIP-guided domain adaptation of image generators. ACM Transactions on Graphics Vol. 41, No. 4, Article No. 141, 2022.

4. Frans, K.; Soros, L.; Witkowski, O. CLIPDraw: Exploring text-to-drawing synthesis through language-image encoders. In: Proceedings of the 36th Conference on Neural Information Processing System, 5207–5218, 2022.

5. Wang, C.; Chai, M.; He, M.; Chen, D.; Liao, J. CLIP-NeRF: Text-and-image driven manipulation of neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3835–3844, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3