Audio-guided implicit neural representation for local image stylization

Author:

Lee Seung Hyun,Kim Sieun,Byeon Wonmin,Oh Gyeongrok,In Sumin,Park Hyeongcheol,Yoon Sang Ho,Hong Sung-Hee,Kim Jinkyu,Kim Sangpil

Abstract

AbstractWe present a novel framework for audio-guided localized image stylization. Sound often provides information about the specific context of a scene and is closely related to a certain part of the scene or object. However, existing image stylization works have focused on stylizing the entire image using an image or text input. Stylizing a particular part of the image based on audio input is natural but challenging. This work proposes a framework in which a user provides an audio input to localize the target in the input image and another to locally stylize the target object or scene. We first produce a fine localization map using an audio-visual localization network leveraging CLIP embedding space. We then utilize an implicit neural representation (INR) along with the predicted localization map to stylize the target based on sound information. The INR manipulates local pixel values to be semantically consistent with the provided audio input. Our experiments show that the proposed framework outperforms other audio-guided stylization methods. Moreover, we observe that our method constructs concise localization maps and naturally manipulates the target object or scene in accordance with the given audio input.

Publisher

Springer Science and Business Media LLC

Reference55 articles.

1. Lee, S. H.; Roh, W.; Byeon, W.; Yoon, S. H.; Kim, C. Y.; Kim, J.; Kim, S.; Lee, S. H.; Oh, G.; Byeon, W.; et al. Sound-guided semantic image manipulation. arXiv preprint arXiv:2112.00007, 2021.

2. Li, T.; Liu, Y.; Owens, A.; Zhao, H. Learning visual styles from audio-visual associations. In: Computer Vision – ECCV 2022. Lecture Notes in Computer Science, Vol. 13697. Avidan, S.; Brostow, G.; Cissé, M.; Farinella, G. M.; Hassner, T. Eds. Springer Cham, 235–252, 2022.

3. Lee, S. H.; Oh, G.; Byeon, W.; Yoon, S. H.; Kim, J.; Kim, S. Robust sound-guided image manipulation. arXiv preprint arXiv:2208.14114, 2022.

4. Kurzman, L.; Vazquez, D.; Laradji, I. Class-based styling: Real-time localized style transfer with semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop, 2019.

5. Castillo, C.; De, S.; Han, X.; Singh, B.; Yadav, A. K.; Goldstein, T. Son of Zorn’s lemma: Targeted style transfer using instance-aware semantic segmentation. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1348–1352, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3