Author:
Ju Yakun,Peng Yuxin,Jian Muwei,Gao Feng,Dong Junyu
Abstract
AbstractPhotometric stereo aims to reconstruct 3D geometry by recovering the dense surface orientation of a 3D object from multiple images under differing illumination. Traditional methods normally adopt simplified reflectance models to make the surface orientation computable. However, the real reflectances of surfaces greatly limit applicability of such methods to real-world objects. While deep neural networks have been employed to handle non-Lambertian surfaces, these methods are subject to blurring and errors, especially in high-frequency regions (such as crinkles and edges), caused by spectral bias: neural networks favor low-frequency representations so exhibit a bias towards smooth functions. In this paper, therefore, we propose a self-learning conditional network with multi-scale features for photometric stereo, avoiding blurred reconstruction in such regions. Our explorations include: (i) a multi-scale feature fusion architecture, which keeps high-resolution representations and deep feature extraction, simultaneously, and (ii) an improved gradient-motivated conditionally parameterized convolution (GM-CondConv) in our photometric stereo network, with different combinations of convolution kernels for varying surfaces. Extensive experiments on public benchmark datasets show that our calibrated photometric stereo method outperforms the state-of-the-art.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献