CLIP-SP: Vision-language model with adaptive prompting for scene parsing

Author:

Li Jiaao,Huang Yixiang,Wu Ming,Zhang Bin,Ji Xu,Zhang Chuang

Abstract

AbstractWe present a novel framework, CLIP-SP, and a novel adaptive prompt method to leverage pre-trained knowledge from CLIP for scene parsing. Our approach addresses the limitations of DenseCLIP, which demonstrates the superior image segmentation provided by CLIP pre-trained models over ImageNet pre-trained models, but struggles with rough pixel-text score maps for complex scene parsing. We argue that, as they contain all textual information in a dataset, the pixel-text score maps, i.e., dense prompts, are inevitably mixed with noise. To overcome this challenge, we propose a two-step method. Firstly, we extract visual and language features and perform multi-label classification to identify the most likely categories in the input images. Secondly, based on the top-k categories and confidence scores, our method generates scene tokens which can be treated as adaptive prompts for implicit modeling of scenes, and incorporates them into the visual features fed into the decoder for segmentation. Our method imposes a constraint on prompts and suppresses the probability of irrelevant categories appearing in the scene parsing results. Our method achieves competitive performance, limited by the available visual-language pre-trained models. Our CLIP-SP performs 1.14% better (in terms of mIoU) than DenseCLIP on ADE20K, using a ResNet-50 backbone.

Publisher

Springer Science and Business Media LLC

Reference37 articles.

1. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431–3440, 2015.

2. Lecture Notes in Computer Science;Y Yuan,2020

3. Yuan, Y.; Chen, X.; Chen, X.; Wang, J. Segmentation transformer: Object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065, 2019.

4. Kirillov, A.; Girshick, R.; He, K.; Dollar, P. Panoptic feature pyramid networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6392–6401, 2019.

5. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6230–6239, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3