Learning physically based material and lighting decompositions for face editing

Author:

Zhang Qian,Thamizharasan Vikas,Tompkin James

Abstract

AbstractLighting is crucial for portrait photography, yet the complex interactions between the skin and incident light are expensive to model computationally in graphics and difficult to reconstruct analytically via computer vision. Alternatively, to allow fast and controllable reflectance and lighting editing, we developed a physically based decomposition through deep learned priors from path-traced portrait images. Previous approaches that used simplified material models or low-frequency or low-dynamic-range lighting struggled to model specular reflections or relight directly without intermediate decomposition. However, we estimate the surface normal, skin albedo and roughness, and high-frequency HDRI maps, and propose an architecture to estimate both diffuse and specular reflectance components. In our experiments, we show that this approach can represent the true appearance function more effectively than simpler baseline methods, leading to better generalization and higher-quality editing.

Publisher

Springer Science and Business Media LLC

Reference38 articles.

1. Bousseau, A.; Paris, S.; Durand, F. User-assisted intrinsic images. ACM Transactions on Graphics Vol. 28, No. 5, 1–10, 2009.

2. Land, E. H.; McCann, J. J. Lightness and retinex theory. Journal of the Optical Society of America Vol. 61, No. 1, 1–11, 1971.

3. Li, C.; Zhou, K.; Lin, S. Intrinsic face image decomposition with human face priors. In: Computer Vision–ECCV 2014. Lecture Notes in Computer Science, Vol. 8693. Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Eds. Springer Cham, 218–233, 2014.

4. Janner, M.; Wu, J. J.; Kulkarni, T. D.; Yildirim, I.; Tenenbaum, J. B. Self-supervised intrinsic image decomposition. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 5938–5948, 2017.

5. Li, Z. Q.; Snavely, N. CGIntrinsics: Better intrinsic image decomposition through physically-based rendering. In: Computer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11207. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 381–399, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3