Weighted average integration of sparse representation and collaborative representation for robust face recognition
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition
Link
http://link.springer.com/content/pdf/10.1007/s41095-016-0061-5.pdf
Reference39 articles.
1. Brunelli R.; Poggio T. Face recognition: Features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 15, No. 10, 1042–1052, 1993.
2. Wright J.; Yang A.Y.; Ganesh A.; Sastry S.S.; Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 31, No. 2, 210–227, 2009.
3. Xu Y.; Zhang D.; Yang J.; Yang J.-Y. An approach for directly extracting features from matrix data and its application in face recognition. Neurocomputing Vol. 71, Nos. 10–12, 1857–1865, 2008.
4. Turk M.; Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience Vol. 3, No. 1, 71–86, 1991.
5. Park S.W.; Savvides M. A multifactor extension of linear discriminant analysis for face recognition under varying pose and illumination. EURASIP Journal on Advances in Signal Processing Vol. 2010, 158395, 2010.
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A robust geometric mean-based subspace discriminant analysis feature extraction approach for image set classification;Optik;2019-12
2. Weighted locality collaborative representation based on sparse subspace;Journal of Visual Communication and Image Representation;2019-01
3. An antinoise sparse representation method for robust face recognition via joint l 1 and l 2 regularization;Expert Systems with Applications;2017-10
4. Discriminative Histogram Intersection Metric Learning and Its Applications;Journal of Computer Science and Technology;2017-05
5. Improving sparsity of coefficients for robust sparse and collaborative representation-based image classification;Neural Computing and Applications;2017-02-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3