A causal convolutional neural network for multi-subject motion modeling and generation

Author:

Hou Shuaiying,Wang Congyi,Zhuang Wenlin,Chen Yu,Wang Yangang,Bao Hujun,Chai Jinxiang,Xu Weiwei

Abstract

AbstractInspired by the success of WaveNet in multi-subject speech synthesis, we propose a novel neural network based on causal convolutions for multi-subject motion modeling and generation. The network can capture the intrinsic characteristics of the motion of different subjects, such as the influence of skeleton scale variation on motion style. Moreover, after fine-tuning the network using a small motion dataset for a novel skeleton that is not included in the training dataset, it is able to synthesize high-quality motions with a personalized style for the novel skeleton. The experimental results demonstrate that our network can model the intrinsic characteristics of motions well and can be applied to various motion modeling and synthesis tasks.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Reference45 articles.

1. Zhang, P. F.; Lan, C. L.; Zeng, W. J.; Xing, J. L.; Xue, J. R.; Zheng, N. N. Semantics-guided neural networks for efficient skeleton-based human action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1109–1118, 2020.

2. Chen, Z.; Li, S. C.; Yang, B.; Li, Q. H.; Liu, H. Multi-scale spatial temporal graph convolutional network for skeleton-based action recognition. Proceedings of the AAAI Conference on Artificial Intelligence Vol. 35, No. 2, 1113–1122, 2021.

3. Gui, L. Y.; Wang, Y. X.; Liang, X. D.; Moura, J. M. F. Adversarial geometry-aware human motion prediction. In: Computer Vision–ECCV 2018. Lecture Notes in Computer Science, Vol. 11208. Ferrari, V.; Hebert, M.; Sminchisescu, C.; Weiss, Y. Eds. Springer Cham, 823–842, 2018.

4. Wang, T. C.; Liu, M. Y.; Tao, A.; Liu, G. L.; Kautz, J.; Catanzaro, B. Few-shot video-to-video synthesis. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, Article No. 451, 5013–5024, 2019.

5. Taylor, G. W.; Hinton, G. E. Factored conditional restricted Boltzmann Machines for modeling motion style. In: Proceedings of the 26th Annual International Conference on Machine Learning, 1025–1032, 2009.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3