Light field super-resolution using complementary-view feature attention

Author:

Zhang Wei,Ke Wei,Yang Da,Sheng Hao,Xiong Zhang

Abstract

AbstractLight field (LF) cameras record multiple perspectives by a sparse sampling of real scenes, and these perspectives provide complementary information. This information is beneficial to LF super-resolution (LFSR). Compared with traditional single-image super-resolution, LF can exploit parallax structure and perspective correlation among different LF views. Furthermore, the performance of existing methods are limited as they fail to deeply explore the complementary information across LF views. In this paper, we propose a novel network, called the light field complementary-view feature attention network (LF-CFANet), to improve LFSR by dynamically learning the complementary information in LF views. Specifically, we design a residual complementary-view spatial and channel attention module (RCSCAM) to effectively interact with complementary information between complementary views. Moreover, RCSCAM captures the relationships between different channels, and it is able to generate informative features for reconstructing LF images while ignoring redundant information. Then, a maximum-difference information supplementary branch (MDISB) is used to supplement information from the maximum-difference angular positions based on the geometric structure of LF images. This branch also can guide the process of reconstruction. Experimental results on both synthetic and real-world datasets demonstrate the superiority of our method. The proposed LF-CFANet has a more advanced reconstruction performance that displays faithful details with higher SR accuracy than state-of-the-art methods.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3