What and where: A context-based recommendation system for object insertion

Author:

Zhang Song-Hai,Zhou Zheng-Ping,Liu Bin,Dong Xi,Hall Peter

Abstract

AbstractWe propose a novel problem revolving around two tasks: (i) given a scene, recommend objects to insert, and (ii) given an object category, retrieve suitable background scenes. A bounding box for the inserted object is predicted in both tasks, which helps downstream applications such as semiautomated advertising and video composition. The major challenge lies in the fact that the target object is neither present nor localized in the input, and furthermore, available datasets only provide scenes with existing objects. To tackle this problem, we build an unsupervised algorithm based on object-level contexts, which explicitly models the joint probability distribution of object categories and bounding boxes using a Gaussian mixture model. Experiments on our own annotated test set demonstrate that our system outperforms existing baselines on all sub-tasks, and does so using a unified framework. Future extensions and applications are suggested.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Reference36 articles.

1. Ricci, F.; Rokach, L.; Shapira, B. Recommender Systems Handbook. Boston: Springer, 2011.

2. Recommender system. Available at https://en.wikipedia.org/wiki/Recommender_system.

3. Johnson, J.; Krishna, R.; Stark, M.; Li, L. J.; Shamma, D. A.; Bernstein, M. S.; Fei-Fei, L. Image retrieval using scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3668–3678, 2015.

4. Wang, J.; Liu, W.; Kumar, S.; Chang, S. F. Learning to hash for indexing big data: A survey. Proceedings of the IEEE Vol. 104, No. 1, 34–57, 2016.

5. Zheng, L.; Yang, Y.; Tian, Q. SIFT meets CNN: A decade survey of instance retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 5, 1224–1244, 2018.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SynFAGnet: A Fully Automated Generative Network for Realistic Fire Image Generation;Fire Technology;2024-02-03

2. Scene-aware Human Pose Generation using Transformer;Proceedings of the 31st ACM International Conference on Multimedia;2023-10-26

3. Deep Image Harmonization with Learnable Augmentation;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

4. Automatic Shadow Generation via Exposure Fusion;IEEE Transactions on Multimedia;2023

5. SceneDirector: Interactive Scene Synthesis by Simultaneously Editing Multiple Objects in Real-Time;IEEE Transactions on Visualization and Computer Graphics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3