Author:
Mu Tai-Jiang,Chen Hao-Xiang,Cai Jun-Xiong,Guo Ning
Abstract
AbstractSparse view 3D reconstruction has attracted increasing attention with the development of neural implicit 3D representation. Existing methods usually only make use of 2D views, requiring a dense set of input views for accurate 3D reconstruction. In this paper, we show that accurate 3D reconstruction can be achieved by incorporating geometric priors into neural implicit 3D reconstruction. Our method adopts the signed distance function as the 3D representation, and learns a generalizable 3D surface reconstruction model from sparse views. Specifically, we build a more effective and sparse feature volume from the input views by using corresponding depth maps, which can be provided by depth sensors or directly predicted from the input views. We recover better geometric details by imposing both depth and surface normal constraints in addition to the color loss when training the neural implicit 3D representation. Experiments demonstrate that our method both outperforms state-of-the-art approaches, and achieves good generalizability.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献