Light field salient object detection: A review and benchmark

Author:

Fu Keren,Jiang Yao,Ji Ge-Peng,Zhou Tao,Zhao Qijun,Fan Deng-Ping

Abstract

AbstractSalient object detection (SOD) is a long-standing research topic in computer vision with increasing interest in the past decade. Since light fields record comprehensive information of natural scenes that benefit SOD in a number of ways, using light field inputs to improve saliency detection over conventional RGB inputs is an emerging trend. This paper provides the first comprehensive review and a benchmark for light field SOD, which has long been lacking in the saliency community. Firstly, we introduce light fields, including theory and data forms, and then review existing studies on light field SOD, covering ten traditional models, seven deep learning-based models, a comparative study, and a brief review. Existing datasets for light field SOD are also summarized. Secondly, we benchmark nine representative light field SOD models together with several cutting-edge RGB-D SOD models on four widely used light field datasets, providing insightful discussions and analyses, including a comparison between light field SOD and RGB-D SOD models. Due to the inconsistency of current datasets, we further generate complete data and supplement focal stacks, depth maps, and multi-view images for them, making them consistent and uniform. Our supplemental data make a universal benchmark possible. Lastly, light field SOD is a specialised problem, because of its diverse data representations and high dependency on acquisition hardware, so it differs greatly from other saliency detection tasks. We provide nine observations on challenges and future directions, and outline several open issues. All the materials including models, datasets, benchmarking results, and supplemented light field datasets are publicly available at https://github.com/kerenfu/LFSOD-Survey.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A foreground-context dual-guided network for light-field salient object detection;Signal Processing: Image Communication;2024-10

2. Illuminator: Image-based illumination editing for indoor scene harmonization;Computational Visual Media;2024-07-05

3. PSCFNet: Prototype Learning and Spatial Consistent Feature Fusion for Efficient Salient Object Detection;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Gated multi-modal edge refinement network for light field salient object detection;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-06-28

5. Effectiveness assessment of recent large vision-language models;Visual Intelligence;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3