Author:
Yang Guo-Ye,Zhou Wen-Yang,Cai Yun,Zhang Song-Hai,Zhang Fang-Lue
Abstract
AbstractPhoto composition is one of the most important factors in the aesthetics of photographs. As a popular application, composition recommendation for a photo focusing on a specific subject has been ignored by recent deep-learning-based composition recommendation approaches. In this paper, we propose a subject-aware image composition recommendation method, SAC-Net, which takes an RGB image and a binary subject window mask as input, and returns good compositions as crops containing the subject. Our model first determines candidate scores for all possible coarse cropping windows. The crops with high candidate scores are selected and further refined by regressing their corner points to generate the output recommended cropping windows. The final scores of the refined crops are predicted by a final score regression module. Unlike existing methods that need to preset several cropping windows, our network is able to automatically regress cropping windows with arbitrary aspect ratios and sizes. We propose novel stability losses for maximizing smoothness when changing cropping windows along with view changes. Experimental results show that our method outperforms state-of-the-art methods not only on the subject-aware image composition recommendation task, but also for general purpose composition recommendation. We also have designed a multistage labeling scheme so that a large amount of ranked pairs can be produced economically. We use this scheme to propose the first subject-aware composition dataset SACD, which contains 2777 images, and more than 5 million composition ranked pairs. The SACD dataset is publicly available at https://cg.cs.tsinghua.edu.cn/SACD/.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on Visual Improvement of Image Aesthetics Based on Multi-Feature Joint Learning;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29