Machine learning for digital try-on: Challenges and progress

Author:

Liang Junbang,Lin Ming C.

Abstract

AbstractDigital try-on systems for e-commerce have the potential to change people’s lives and provide notable economic benefits. However, their development is limited by practical constraints, such as accurate sizing of the body and realism of demonstrations. We enumerate three open challenges remaining for a complete and easy-to-use try-on system that recent advances in machine learning make increasingly tractable. For each, we describe the problem, introduce state-of-the-art approaches, and provide future directions.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Reference29 articles.

1. Zheng, Z. H.; Zhang, H. T.; Zhang, F. L.; Mu, T. J. Image-based clothes changing system. Computational Visual Media Vol. 3, No. 4, 337–347, 2017.

2. Dibra, E.; Jain, H.; Öztireli, C.; Ziegler, R.; Gross, M. HS-Nets: Estimating human body shape from silhouettes with convolutional neural networks. In: Proceedings of the 4th International Conference on 3D Vision, 108–117, 2016.

3. Bălan, A. O.; Black, M. J. The naked truth: Estimating body shape under clothing. In: Computer Vision -ECCV 2008. Lecture Notes in Computer Science, Vol. 5303. Forsyth, D.; Torr, P.; Zisserman, A. Eds. Springer Berlin, 15–29, 2008.

4. Lassner, C.; Romero, J.; Kiefel, M.; Bogo, F.; Black, M. J.; Gehler, P. V. Unite the people: Closing the loop between 3D and 2D human representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4704–4713, 2017.

5. Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; Black, M. J. SMPL: A skinned multi-person linear model. ACM Transactions on Graphics Vol. 34, No. 6, Article No. 248, 2015.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3