A survey of deep learning-based 3D shape generation

Author:

Xu Qun-Ce,Mu Tai-Jiang,Yang Yong-Liang

Abstract

AbstractDeep learning has been successfully used for tasks in the 2D image domain. Research on 3D computer vision and deep geometry learning has also attracted attention. Considerable achievements have been made regarding feature extraction and discrimination of 3D shapes. Following recent advances in deep generative models such as generative adversarial networks, effective generation of 3D shapes has become an active research topic. Unlike 2D images with a regular grid structure, 3D shapes have various representations, such as voxels, point clouds, meshes, and implicit functions. For deep learning of 3D shapes, shape representation has to be taken into account as there is no unified representation that can cover all tasks well. Factors such as the representativeness of geometry and topology often largely affect the quality of the generated 3D shapes. In this survey, we comprehensively review works on deep-learning-based 3D shape generation by classifying and discussing them in terms of the underlying shape representation and the architecture of the shape generator. The advantages and disadvantages of each class are further analyzed. We also consider the 3D shape datasets commonly used for shape generation. Finally, we present several potential research directions that hopefully can inspire future works on this topic.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition

Reference226 articles.

1. Zhang, Z. Y. Microsoft kinect sensor and its effect. IEEE MultiMedia Vol. 19, No. 2, 4–10, 2012.

2. Chang, A. X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q. X.; Li, Z. M.; Savarese, S.; Savva, M.; Song, S. R.; Su, H.; et al. ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012, 2015.

3. Deng, J.; Dong, W.; Socher, R.; Li, L. J.; Kai, L.; Li, F. F. ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 248–255, 2009.

4. Kirk, D. NVIDIA cuda software and gpu parallel computing architecture. In: Proceedings of the 6th International Symposium on Memory Management, 103–104, 2007.

5. Guo, M. H.; Xu, T. X.; Liu, J. J.; Liu, Z. N.; Jiang, P. T.; Mu, T. J.; Zhang, S. H.; Martin, R. R.; Cheng, M. M.; Hu, S. M. Attention mechanisms in computer vision: A survey. Computational Visual Media Vol. 8, No. 3, 331–368, 2022.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

2. Lesion segmentation using 3D scan and deep learning for the evaluation of facial portwine stain birthmarks;Photodiagnosis and Photodynamic Therapy;2024-04

3. Recent advances in implicit representation-based 3D shape generation;Visual Intelligence;2024-03-25

4. Message from the Editor-in-Chief;Computational Visual Media;2023-11-30

5. DiffFacto: Controllable Part-Based 3D Point Cloud Generation with Cross Diffusion;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3