Free-Standing Single-Atom Catalyst-Based Electrodes for CO2 Reduction

Author:

Hossain M. Nur,Zhang LeiORCID,Neagu Roberto,Rassachack Enoch

Abstract

AbstractElectrochemical CO2 reduction technology could solve the CO2-induced climate warming by electrochemically converting atmospheric CO2 back into fuel, essentially recycling it and building a low carbon emission economy. However, the electrochemical CO2 reduction reaction (CO2RR) poses a significant challenge due to the highly stable and linear CO2 molecules, in addition to a proton-coupled multi-electron transfer process. Thus, highly active catalysts, placed on activity bolstering materials, and permeable electrodes are crucial for CO2RR. Single-atom catalysts (SACs) have recently garnered increasing interest in the electrocatalysis community due to their potentially high mass efficiency and cost benefits (every atom is an active center, resulting in nearly 100% utilization) and adjustable selectivity (higher uniformity of the active sites compared to nanoparticles). However, preserving the accessibility and activity of the SACs inside the electrode poses major materials development and electrode design challenges. A conventional layered structure SAC electrode typically consists of a gas diffusion layer (GDL), a microporous layer (MPL) and a SAC catalyst layer (SACCL), fabricated by using a powder bonding process. However, this process usually encounters issues such as delamination and instability of SACs due to the weak binder-catalyst-support interface. Conversely, the free-standing SAC electrode design has the potential to overcome these issues by eliminating the GDL, MPL, and need of a binder, in contrast to the powder bonding process. This work first reviews the latest developments in experimental and modeling studies of powdered SAC electrode by the traditional powder bonding process. Next, it examines the development towards the free-standing SAC electrode for high-performance electrochemical reduction of CO2. The synthesis-structure-fabrication-performance relationships of SAC-based materials and associated electrodes are analyzed. Furthermore, the article presents future challenges and perspectives for high-performance SAC electrodes for CO2RR. Graphical Abstract

Funder

National Research Council Canada

Natural Resources Canada

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3