Pathways of the Electrochemical Nitrogen Reduction Reaction: From Ammonia Synthesis to Metal-N2 Batteries

Author:

Jesudass Sebastian Cyril,Surendran Subramani,Kim Joon Young,An Tae-Yong,Janani Gnanaprakasam,Kim Tae-Hoon,Kim Jung Kyu,Sim UkORCID

Abstract

AbstractAmmonia is considered as an alternative fuel resource for a sustainable green future. The production of ammonia involves the electrochemical nitrogen reduction reaction (NRR), which has gained considerable attention due to its eco-friendly resources and nonharmful byproducts. Even with the manifold works on NRR, the technique has not reached the industrial scale because of the impediments of NRR electrocatalysts, and in addition, state-of-the-art electrocatalysts have not yet been discovered. In this review, first, the mechanism of the NRR, key metrics, and operational procedures for NRR electrochemistry are presented. Then, the electrocatalyst designs for efficient NRR are briefly introduced, followed by a discussion on the influence of the electrolytes that enhance NRR performance. The counterion effects of electrolytes on NRR performance and strategies for suppressing the HER by electrolyte additives are also discussed. Later, the NRR mechanisms are upgraded, and a comprehensive review of metal-N2 batteries is provided. This review summarizes the effective methods for performing the NRR and strategies to suppress the HER on various electrocatalysts by tuning electrolytes and their additives. The review concludes by discussing the prospects of metal-N2 batteries. Graphical Abstract

Funder

National Research Foundation of Korea

Ministry of Trade, Industry and Energy

Publisher

Springer Science and Business Media LLC

Subject

Electrochemistry,Energy Engineering and Power Technology,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3