Ion Exchange Membranes in Electrochemical CO2 Reduction Processes

Author:

Habibzadeh Faezeh,Mardle Peter,Zhao Nana,Riley Harry D.,Salvatore Danielle A.,Berlinguette Curtis P.,Holdcroft Steven,Shi ZhiqingORCID

Abstract

AbstractThe low-temperature electrolysis of CO2 in membrane-based flow reactors is a promising technology for converting captured CO2 into valuable chemicals and fuels. In recent years, substantial improvements in reactor design have significantly improved the economic viability of this technology; thus, the field has experienced a rapid increase in research interest. Among the factors related to reactor design, the ion exchange membrane (IEM) plays a prominent role in the energetic efficiency of CO2 conversion into useful products. Reactors utilizing cation exchange, anion exchange and bipolar membranes have all been developed, each providing unique benefits and challenges that must be overcome before large-scale commercialization is feasible. Therefore, to direct advances in IEM technology specific to electrochemical CO2 reduction reactions (CO2RRs), this review serves to first provide polymer scientists with a general understanding of membrane-based CO2RR reactors and membrane-related shortcomings and to encourage systematic synthetic approaches to develop membranes that meet the specific requirements of CO2RRs. Second, this review provides researchers in the fields of electrocatalysis and CO2RRs with more detailed insight into the often-overlooked membrane roles and requirements; thus, new methodologies for membrane evaluation during CO2RR may be developed. By using CO2-to-CO/HCOO methodologies as practical baseline systems, a clear conceptualization of the merits and challenges of different systems and reasonable objectives for future research and development are presented. Graphical Abstract

Funder

National Research Council Canada

Publisher

Springer Science and Business Media LLC

Subject

Electrochemistry,Energy Engineering and Power Technology,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3