Abstract
AbstractThe electrocatalytic nitrogen reduction reaction (NRR) has been one of the most intriguing catalytic reactions in recent years, providing an energy-saving and environmentally friendly alternative to the conventional Haber–Bosch process for ammonia production. However, the activity and selectivity issues originating from the activation barrier of the NRR intermediates and the competing hydrogen evolution reaction result in the unsatisfactory NH3 yield rate and Faradaic efficiency of current NRR catalysts. Atomic site catalysts (ASCs), an emerging group of heterogeneous catalysts with a high atomic utilization rate, selectivity, and stability, may provide a solution. This article undertakes an exploration and systematic review of a highly significant research area: the principles of designing ASCs for the NRR. Both the theoretical and experimental progress and state-of-the-art techniques in the rational design of ASCs for the NRR are summarized, and the topic is extended to double-atom catalysts and boron-based metal-free ASCs. This review provides guidelines for the rational design of ASCs for the optimum activity and selectivity for the electrocatalytic NRR.
Graphical Abstract
Rational design of atomic site catalysts (ASCs) for nitrogen reduction reaction (NRR) has both scientific and industrial significance. In this review, the recent experimental and theoretical breakthroughs in the design principles of transition metal ASCs for NRR are comprehensively discussed, and the topic is also extended to double-atom catalysts and boron-based metal-free ASCs.
Funder
Hong Kong Polytechnic University
RGC Hong Kong
Shanghai Science and Technology Committee
Publisher
Springer Science and Business Media LLC
Subject
Electrochemistry,Energy Engineering and Power Technology,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献