Surface Segregation in Solid Oxide Cell Oxygen Electrodes: Phenomena, Mitigation Strategies and Electrochemical Properties

Author:

Chen KongfaORCID,Jiang San PingORCID

Abstract

Abstract Solid oxide cells (SOCs) are highly efficient and environmentally benign devices that can be used to store renewable electrical energy in the form of fuels such as hydrogen in the solid oxide electrolysis cell mode and regenerate electrical power using stored fuels in the solid oxide fuel cell mode. Despite this, insufficient long-term durability over 5–10 years in terms of lifespan remains a critical issue in the development of reliable SOC technologies in which the surface segregation of cations, particularly strontium (Sr) on oxygen electrodes, plays a critical role in the surface chemistry of oxygen electrodes and is integral to the overall performance and durability of SOCs. Due to this, this review will provide a critical overview of the surface segregation phenomenon, including influential factors, driving forces, reactivity with volatile impurities such as chromium, boron, sulphur and carbon dioxide, interactions at electrode/electrolyte interfaces and influences on the electrochemical performance and stability of SOCs with an emphasis on Sr segregation in widely investigated (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3−δ. In addition, this review will present strategies for the mitigation of Sr surface segregation. Graphic Abstract

Funder

Australian Research Council

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3