Abstract
AbstractLithium-rich materials (LRMs) are among the most promising cathode materials toward next-generation Li-ion batteries due to their extraordinary specific capacity of over 250 mAh g−1 and high energy density of over 1 000 Wh kg−1. The superior capacity of LRMs originates from the activation process of the key active component Li2MnO3. This process can trigger reversible oxygen redox, providing extra charge for more Li-ion extraction. However, such an activation process is kinetically slow with complex phase transformations. To address these issues, tremendous effort has been made to explore the mechanism and origin of activation, yet there are still many controversies. Despite considerable strategies that have been proposed to improve the performance of LRMs, in-depth understanding of the relationship between the LRMs’ preparation and their activation process is limited. To inspire further research on LRMs, this article firstly systematically reviews the progress in mechanism studies and performance improving attempts. Then, guidelines for activation controlling strategies, including composition adjustment, elemental substitution and chemical treatment, are provided for the future design of Li-rich cathode materials. Based on these investigations, recommendations on Li-rich materials with precisely controlled Mn/Ni/Co composition, multi-elemental substitution and oxygen vacancy engineering are proposed for designing high-performance Li-rich cathode materials with fast and stable activation processes.
Graphical abstract
The “Troika” of composition adjustment, elemental substitution, and chemical treatment can drive the Li-rich cathode towards stabilized and accelerated activation.
Funder
The University of Queensland
Publisher
Springer Science and Business Media LLC
Subject
Electrochemistry,Energy Engineering and Power Technology,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献