Author:
Blake Mike,Davison Richard A.
Abstract
Abstract
We study the connection between many-body quantum chaos and energy dynamics for the holographic theory dual to the Kerr-AdS black hole. In particular, we determine a partial differential equation governing the angular profile of gravitational shock waves that are relevant for the computation of out-of-time ordered correlation functions (OTOCs). Further we show that this shock wave profile is directly related to the behaviour of energy fluctuations in the boundary theory. In particular, we demonstrate using the Teukolsky formalism that at complex frequency ω∗ = i2πT there exists an extra ingoing solution to the linearised Einstein equations whenever the angular profile of metric perturbations near the horizon satisfies this shock wave equation. As a result, for metric perturbations with such temporal and angular profiles we find that the energy density response of the boundary theory exhibit the signatures of “pole-skipping” — namely, it is undefined, but exhibits a collective mode upon a parametrically small deformation of the profile. Additionally, we provide an explicit computation of the OTOC in the equatorial plane for slowly rotating large black holes, and show that its form can be used to obtain constraints on the dispersion relations of collective modes in the dual CFT.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference95 articles.
1. V. Khemani, A. Vishwanath and D. A. Huse, Operator spreading and the emergence of dissipation in unitary dynamics with conservation laws, Phys. Rev. X 8 (2018) 031057 [arXiv:1710.09835] [INSPIRE].
2. A. Nahum, S. Vijay and J. Haah, Operator Spreading in Random Unitary Circuits, Phys. Rev. X 8 (2018) 021014 [arXiv:1705.08975] [INSPIRE].
3. B. Swingle and D. Chowdhury, Slow scrambling in disordered quantum systems, Phys. Rev. B 95 (2017) 060201 [arXiv:1608.03280] [INSPIRE].
4. A. Kitaev and S. J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].
5. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献