Abstract
Abstract
We study the entanglement entropy of gauged internal degrees of freedom in a two dimensional symmetric product orbifold CFT, whose configurations consist of N strands sewn together into “long” strings, with wavefunctions symmetrized under permutations. In earlier work a related notion of “entwinement” was introduced. Here we treat this system analogously to a system of N identical particles. From an algebraic point of view, we point out that the reduced density matrix on k out of N particles is not associated with a subalgebra of operators, but rather with a linear subspace, which we explain is sufficient. In the orbifold CFT, we compute the entropy of a single strand in states holographically dual in the D1/D5 system to a conical defect geometry or a massless BTZ black hole and find a result identical to entwinement. We also calculate the entropy of two strands in the state that represents the conical defect; the result differs from entwinement. In this case, matching entwinement would require finding a gauge-invariant way to impose continuity across strands.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献