Author:
Britto Ruth,Ochirov Alexander
Abstract
Abstract
We analyze the validity of BCFW recursion relations for currents of n − 2 gluons and two massive quarks, where one of the quarks is off shell and the remaining particles are on shell. These currents are gauge-dependent and can be used as ingredients in the unitarity-based approach to computing one-loop amplitudes. The validity of BCFW recursion relations is well known to depend on the so-called boundary behavior of the currents as the momentum shift parameter goes to infinity. With off-shell currents, a new potential problem arises, namely unphysical poles that depend on the choice of gauge. We identify conditions under which boundary terms are absent and unphysical poles are avoided, so that there is a natural recursion relation. In particular, we are able to choose a gauge in which we construct a valid shift for currents with at least n − 3 gluons of the same helicity. We derive an analytic formula in the case where all gluons have the same helicity. As by-products, we prove the vanishing boundary behavior of general off-shell objects in Feynman gauge, and we find a compact generalization of Berends-Giele gluon currents with a generic reference spinor.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献