Evolutionary honing in and mutational replacement: how long-term directed mutational responses to specific environmental pressures are possible

Author:

Livnat Adi,Melamed Daniel

Abstract

AbstractRecent results have shown that the human malaria-resistant hemoglobin S mutation originates de novo more frequently in the gene and in the population where it is of adaptive significance, namely, in the hemoglobin subunit beta gene compared to the nonresistant but otherwise identical 20A$$\rightarrow$$ T mutation in the hemoglobin subunit delta gene, and in sub-Saharan Africans, who have been subject to intense malarial pressure for many generations, compared to northern Europeans, who have not. This finding raises a fundamental challenge to the traditional notion of accidental mutation. Here, we address this finding with the replacement hypothesis, according to which preexisting genetic interactions can lead directly and mechanistically to mutations that simplify and replace them. Thus, an evolutionary process under selection can gradually hone in on interactions of importance for the currently evolving adaptations, from which large-effect mutations follow that are relevant to these adaptations. We exemplify this hypothesis using multiple types of mutation, including gene fusion mutations, gene duplication mutations, A$$\rightarrow$$ G mutations in RNA-edited sites and transcription-associated mutations, and place it in the broader context of a system-level view of mutation origination called interaction-based evolution. Potential consequences include that similarity of mutation pressures may contribute to parallel evolution in genetically related species, that the evolution of genome organization may be driven by mutational mechanisms, that transposable element movements may also be explained by replacement, and that long-term directed mutational responses to specific environmental pressures are possible. Such mutational phenomena need to be further tested by future studies in natural and artificial settings.

Funder

John Templeton Foundation

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Ecology, Evolution, Behavior and Systematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3