Persuasion without polarization? Modelling persuasive argument communication in teams with strong faultlines

Author:

Feliciani ThomasORCID,Flache Andreas,Mäs Michael

Abstract

AbstractStrong demographic faultlines are a potential source of conflict in teams. To study conditions under which faultlines can result in between-group bi-polarization of opinions, a computational model of persuasive argument communication has been proposed. We identify two hitherto overlooked degrees of freedom in how researchers formalized the theory. First, are arguments agents communicate influencing each other’s opinions explicitly or implicitly represented in the model? Second, does similarity between agents increase chances of interaction or the persuasiveness of others’ arguments? Here we examine these degrees of freedom in order to assess their effect on the model’s predictions. We find that both degrees of freedom matter: in a team with strong demographic faultline, the model predicts more between-group bi-polarization when (1) arguments are represented explicitly, and (2) when homophily is modelled such that the interaction between similar agents are more likely (instead of more persuasive).

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Modelling and Simulation,General Computer Science,General Decision Sciences

Reference72 articles.

1. Anzola D, Barbrook-Johnson P, Cano JI (2017) Self-organization and social science. Comput Math Org Theory 23(2):221–257. https://doi.org/10.1007/s10588-016-9224-2

2. Axelrod R (1997) The dissemination of culture—a model with local convergence and global polarization. J Confl Resolut 41(2):203–226

3. Baldassarri D, Bearman P (2007) Dynamics of political polarization. Am Sociol Rev 72(5):784–811

4. Banisch S (2010) Unfreezing social dynamics: synchronous update and dissimilation. In: A Ernst, S Kuhn (eds) Proceedings of the 3rd world congress on social simulation (WCSS 2010), Kassel

5. Banisch S, Olbrich E (2017) Opinion Polarization by Learning from Social Feedback. ArXiv Preprint (arXiv:1704.02890)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3