Connecting the domains: an investigation of internet domains found in Covid-19 conspiracy tweets

Author:

Moffitt J. D.ORCID,King CatherineORCID,Carley Kathleen M.ORCID

Abstract

AbstractConspiracy theories (CTs) have thrived during the COVID-19 pandemic and continue to spread on social media despite attempts at fact-checking. The isolation and fear associated with this pandemic likely contributed to the generation and spread of these theories. Another possible factor is the high rate of Twitter users linking to off-platform alternative news sources through URL sharing (Moffitt et al. 2021). In this paper, we compare URLs and their parent domains linked in CT and non-CT tweets. First, we searched the parent domains of URLs shared in conspiracy theory and non-conspiracy theory classified tweets for the presence of Google tracking codes. We then constructed meta-networks linking domains, tracking codes, and Twitter users to find connections between domains and evidence of an eco-system that may have contributed to the cultivation and spread of conspiracy theories during the pandemic.

Funder

Office of Naval Research

Carnegie Mellon University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Modeling and Simulation,General Computer Science,General Decision Sciences

Reference52 articles.

1. Aaronovitch D (2010) Voodoo histories: The role of the conspiracy theory in shaping modern history. Riverhead Books, New York, NY

2. Alexander L (2015) Unveiling hidden connections with google analytics ids. https://www.bellingcat.com/resources/how-tos/2015/07/23/unveiling-hidden-connections-with-google-analytics-ids/

3. Alexander L (2015) Open-source information reveals pro-kremlin web campaign. https://globalvoices.org/2015/07/13/open-source-information-reveals-pro-kremlin-web-campaign/

4. Altman N, Carley KM, Reminga J (2020) Ora user’s guide 2020. Carnegie Mellon University, Tech. rep.

5. Aphiwongsophon S, Chongstitvatana P (2018) Detecting fake news with machine learning method. Int Conf Electrical Eng/Electron Comput Telecommun Inform Technol. https://doi.org/10.1109/ECTICon.2018.8620051

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3