Is more always better? Unveiling the impact of contributor dynamics on collaborative mapping

Author:

McGough Aylin,Kavak Hamdi,Mahabir RonORCID

Abstract

AbstractOpen, collaborative mapping initiatives such as OpenStreetMap, a wiki-style map of the world, continually face concerns about the reliability and authority of its data. Based on harnessing the power of millions of volunteers globally, the data production process is decentralized and reflects a mosaic of individual contributors’ skills, motivations, and experiences. Linus’ Law, a widespread assumption within open-source communities, suggests that data quality increases with the number of contributors. In this paper, we evaluate Linus’ Law as applied to the co-production of volunteered geographic information using an agent-based model and examine the effects of knowledge level, variability, and prioritization on emergent production patterns and overall data quality. Our results demonstrate how diminishing returns and the experience of contributors limit Linus’ Law as an intrinsic assessment of data quality.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Modeling and Simulation,General Computer Science,General Decision Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3