An artificial neural network identification method for thermal resistance of exterior walls of buildings based on numerical experiments
Author:
Publisher
Springer Science and Business Media LLC
Subject
Energy (miscellaneous),Building and Construction
Link
http://link.springer.com/content/pdf/10.1007/s12273-019-0524-6.pdf
Reference31 articles.
1. Ashtiani A, Mirzaei PA, Haghighat F (2014). Indoor thermal condition in urban heat island: Comparison of the artificial neural network and regression methods prediction. Energy and Buildings, 76: 597–604.
2. Afroz Z, Shafiullah G, Urmee T, Higgins G (2017). Prediction of indoor temperature in an institutional building. Energy Procedia, 142: 1860–1866.
3. Balaji C, Padhi T (2010). A new ANN driven MCMC method for multi-parameter estimation in two-dimensional conduction with heat generation. International Journal of Heat and Mass Transfer, 53: 5440–5455.
4. Ben-Nakhi A, Mahmoud MA, Mahmoud AM (2008). Inter-model comparison of CFD and neural network analysis of natural convection heat transfer in a partitioned enclosure. Applied Mathematical Modelling, 32: 1834–1847.
5. Berardi U, Naldi M (2017). The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance. Energy and Buildings, 144: 262–275.
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting frost heave in soil-water systems using the generalized regression neural network optimized with particle swarm optimization algorithm;Cold Regions Science and Technology;2024-10
2. Artificial Intelligence Approach for Bio-Based Materials’ Characterization and Explanation;Buildings;2024-06-01
3. Review of unmanned aerial vehicle infrared thermography (UAV-IRT) applications in building thermal performance: towards the thermal performance evaluation of building envelope;Quantitative InfraRed Thermography Journal;2024-05-29
4. Integrated passive design method optimized for carbon emissions, economics, and thermal comfort of zero-carbon buildings;Energy;2024-05
5. Machine learning models applied to moisture assessment in building materials;Construction and Building Materials;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3