Assessing the impact of heat mitigation measures on thermal performance and energy demand at the community level: A pathway toward designing net-zero energy communities

Author:

Ullah Khan Rahmat,Prodanovic Veljko,Pignatta Gloria,Deletic Ana,Santamouris Mattheos

Abstract

AbstractIn the context of escalating global energy demands, urban areas, specifically the building sector, contribute to the largest energy consumption, with urban overheating exacerbating this issue. Utilizing urban modelling for heat-mitigation and reduction of energy demand is crucial steps towards a sustainable built-environment, complementing onsite energy generation in the design and development of Net-zero Energy (NZE) Settlement, especially in the context of Australian weather conditions. Addressing a significant gap in existing literature, this study offers empirical analysis on the climate and energy efficacy of integrated heat mitigation strategies applied in 14 neighbourhood typologies located in Sydney, Australia. Examining the application of cool materials on roads, pavements, and rooftops, alongside urban vegetation enhancement, the analysis demonstrates scenario effectiveness on heat mitigation that leads to reduce ambient temperature and energy demands along with CO2 emissions within the neighbourhoods. Considering building arrangement, built-area ratio, building height, and locations, ENVI-met and CitySim are utilized to assess the heat-mitigation and the energy demand of neighbourhoods, respectively. Results indicate that mitigation measures can lead up to a 2.71 °C reduction in ambient temperature and over 25% reduction in Cooling Degree Hours, with a 34.34% reduction in cooling energy demand and overall energy savings of up to 12.49%. In addition, the annual energy-saving yields a CO2 reduction of approximately 141.12 tonnes, where additional vegetation further amplifies these reductions by enhancing CO2 absorption. This study showcases the pathway towards achieving NZE goals in climates similar to that of Australia, highlighting significant benefits in heat-mitigation, environmental impact, and energy-savings.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3