Data-driven model predictive control for power demand management and fast demand response of commercial buildings using support vector regression
Author:
Publisher
Springer Science and Business Media LLC
Subject
Energy (miscellaneous),Building and Construction
Link
https://link.springer.com/content/pdf/10.1007/s12273-021-0811-x.pdf
Reference51 articles.
1. Afram A, Janabi-Sharifi F (2014). Theory and applications of HVAC control systems—A review of model predictive control (MPC). Building and Environment, 72: 343–355.
2. Ahmad MW, Reynolds J, Rezgui Y (2018). Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. Journal of Cleaner Production, 203: 810–821.
3. Arnold GW (2011). Challenges and opportunities in smart grid: A position article. Proceedings of the IEEE, 99: 922–927.
4. Avci M, Erkoc M, Rahmani A, et al. (2013). Model predictive HVAC load control in buildings using real-time electricity pricing. Energy and Buildings, 60: 199–209.
5. Chen Y, Xu P, Chu Y, et al. (2017). Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Applied Energy, 195: 659–670.
Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Intrinsically interpretable machine learning-based building energy load prediction method with high accuracy and strong interpretability;Energy and Built Environment;2024-08
2. End-to-end data-driven modeling framework for automated and trustworthy short-term building energy load forecasting;Building Simulation;2024-06-20
3. An interpretable graph convolutional neural network based fault diagnosis method for building energy systems;Building Simulation;2024-06-20
4. Predicting the clothing insulation through machine learning algorithms: A comparative analysis and a practical approach;Building Simulation;2024-03-16
5. Busbar voltage-based control strategy for energy flexibility in farmhouse coupled to photovoltaic systems;Renewable Energy;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3