Federated learning-based short-term building energy consumption prediction method for solving the data silos problem

Author:

Li Junyang,Zhang Chaobo,Zhao Yang,Qiu Weikang,Chen Qi,Zhang Xuejun

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Building and Construction

Reference68 articles.

1. Ahmad MW, Mourshed M, Rezgui Y (2017). Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings, 147: 77–89.

2. Amasyali K, El-Gohary N (2021). Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings. Renewable and Sustainable Energy Reviews, 142: 110714.

3. Arjunan P, Poolla K, Miller C (2020). EnergyStar++: Towards more accurate and explanatory building energy benchmarking. Applied Energy, 276: 115413.

4. ASHRAE (2013). ASHRAE Standard 169-2013. Climatic Data for Building Design Standards. GA, Atlanta, USA: American Society of Heating, Refrigerating and Air-Conditioning Engineers.

5. ASHRAE (2014). ASHRAE Guideline 14-2014. Measurement of Energy, Demand, and Water Savings. GA, Atlanta, USA: American Society of Heating, Refrigerating and Air-Conditioning Engineers.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3