Impact of radiative cooling on the energy performance of courtyards in Mediterranean climate

Author:

Domínguez-Torres Carlos-Antonio,Domínguez-Delgado Antonio

Abstract

AbstractRadiative cooling has proven to be a useful tool to address the problems of lack of comfort and excessive energy consumption in situations of high temperatures, overheating and heat waves. Likewise, incorporating courtyards in warm climate zones has been found to be highly beneficial in addressing similar challenges. Hence, there is interest in analyzing the combined effects of both: radiative cooling and courtyards. This paper presents an analysis of the impact of the application of radiative cooling on a courtyard using a comprehensive simulation approach that includes a CFD model for the thermodynamic airflow in the adjacent roofs and inside the courtyard, equations for the transient heat conduction through roofs, walls and courtyard slabs, and a hybrid raytracing-radiosity model for the evaluation of the solar radiation reaching the building surfaces and its reflections, both of specular and diffuse origin, and for the calculation of the thermal radiation exchange, especially with the sky. The results show that in the hot season, the courtyard with radiative cooling always provides lower temperatures than the initial courtyard does, with a temperature range of 18.33 °C to 33.78 °C, compared to a range of 19.32 °C to 38.00 °C in the initial courtyard, and producing a greater difference with outdoor temperatures that can reach 12 °C versus 8 °C for the reference case. In addition, it was found that the courtyard with radiative cooling is able to significantly reduce the observed nighttime overheating by providing lower temperatures than the outdoor temperatures in the 50% of the nights studied. It was also found that the thermal loads to achieve indoor thermal comfort in the spaces adjacent to the courtyard were reduced by 63.46% to 69.85%.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3