A newly designed BIPV system with enhanced passive cooling and ventilation

Author:

Ahmadi Moghaddam Hadi,Tkachenko Svetlana,Yeoh Guan Heng,Timchenko Victoria

Abstract

AbstractNowadays, the application of renewable energies such as solar energy in the building sector has increased notably considering the adverse impacts of climate change on human life; hence many studies have focused on the application of photovoltaic panels in buildings. In the current study, a 3D computational fluid dynamics (CFD) model has been developed to evaluate the performance of a newly designed building-integrated photovoltaic (BIPV) system. Given the negative influence of overheating on the lifespan and performance of PV panels, their passive air cooling has been studied. Further, the potential of rooftop-mounted solar panels in passive ventilation of buildings by generating natural convective currents has been explored. The developed CFD model takes into consideration the effects of radiation, conduction, and buoyancy-driven natural convective currents generated by solar PV panels which are heated due to the exposure to solar radiation heat flux. The results suggest that applying a high surface emissivity for the part of the roof beneath the PV panels intensifies the natural convective currents which in turn provides better cooling for PV panels with higher cooling effects at higher solar heat fluxes. Up to a 34% increase in the convective mass flow rate and a 3 K decrease in the mean temperature of the panels were attained by modifying the emissivity of roof surface. Such a 3 K decrease in the operating temperature of the PV panels can enhance their efficiency and lifespan by about 1.56% and 21 %, respectively. Based on the operating conditions and system characteristics, the BIPV system yielded an air change rate (ACH) in the range of 3–13 which was considered to be highly prevalent in providing the required passive ventilation for a wide range of applications. It was also observed that the flow dynamics inside the building were affected by both the amount of solar heat load incident on the solar panels and the emissivity of the roof surface behind the panels.

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3