An improved transfer learning strategy for short-term cross-building energy prediction using data incremental
Author:
Publisher
Springer Science and Business Media LLC
Subject
Energy (miscellaneous),Building and Construction
Link
https://link.springer.com/content/pdf/10.1007/s12273-023-1053-x.pdf
Reference64 articles.
1. Ahmad MW, Mourshed M, Rezgui Y (2017). Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings, 147: 77–89.
2. Ahmad T, Zhang H, Yan B (2020). A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustainable Cities and Society, 55: 102052.
3. Chen Y, Xu P, Chu Y, et al. (2017). Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Applied Energy, 195: 659–670.
4. Fan C, Xiao F, Zhao Y (2017). A short-term building cooling load prediction method using deep learning algorithms. Applied Energy, 195: 222–233.
5. Fan C, Sun Y, Xiao F, et al. (2020). Statistical investigations of transfer learning-based methodology for short-term building energy predictions. Applied Energy, 262: 114499.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Wind-Induced Aerodynamic Responses of Triangular High-Rise Buildings with Varying Cross-Section Areas;Buildings;2024-08-30
2. Effects of various information scenarios on layer-wise relevance propagation-based interpretable convolutional neural networks for air handling unit fault diagnosis;Building Simulation;2024-08-19
3. Energy consumption dynamic prediction for HVAC systems based on feature clustering deconstruction and model training adaptation;Building Simulation;2024-07-19
4. Transfer learning integrating similarity analysis for short-term and long-term building energy consumption prediction;Applied Energy;2024-07
5. Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning;Energy;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3