A hybrid energy management approach for home appliances using climatic forecasting
Author:
Publisher
Springer Science and Business Media LLC
Subject
Energy (miscellaneous),Building and Construction
Link
http://link.springer.com/content/pdf/10.1007/s12273-019-0552-2.pdf
Reference42 articles.
1. Ahmad AS, Hassan MY, Abdullah MP, Rahman HA, Hussin F, Abdullah H, Saidur R (2014). A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renewable and Sustainable Energy Reviews, 33: 102–109.
2. Ardakani FJ, Ardehali MM (2014). Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types. Energy, 65: 452–461.
3. Balshi MS, McGuire AD, Duffy P, Flannigan M, Walsh J, Melillo J (2009). Assessing the response of area burned to changing climate in Western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biology, 15: 578–600.
4. Biswas MAR, Robinson MD, Fumo N (2016). Prediction of residential building energy consumption: A neural network approach. Energy, 117: 84–92.
5. Candanedo LM, Feldheim V, Deramaix D (2017). Data driven prediction models of energy use of appliances in a low-energy house. Energy and Buildings, 140: 81–97.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning enabled film pressure sensor to identify surface contacts: An application in surface transmission of infectious disease;Building Simulation;2024-04-13
2. A multi-step electricity prediction model for residential buildings based on ensemble Empirical Mode Decomposition technique;Science and Technology for Energy Transition;2024
3. GA-BiLSTM: an intelligent energy prediction and optimization approach for individual home appliances;Evolving Systems;2023-07-29
4. Intelligent energy aware approaches for residential buildings: state-of-the-art review and future directions;Cluster Computing;2022-05-07
5. Forecasting of Appliances House in a Low-Energy Depend on Grey Wolf Optimizer;Computers, Materials & Continua;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3