Determination of the frequency- and temperature-dependent stiffness and damping properties of thermoplastics for the prediction of the vibration and heating behaviour during ultrasonic welding

Author:

Hopmann Christian,Dahlmann Rainer,Weihermüller MaxORCID,Wipperfürth Jens,Sommer Jan

Abstract

AbstractThe precise and realistic simulation of the vibration and heating behaviour of thermoplastics in the ultrasonic welding process has so far been associated with great challenges. In particular, the determination of the required frequency- and temperature-dependent mechanical stiffness and damping properties in the high-frequency vibration range is only insufficiently possible according to the current state of the art, which prevents an early and valid numerical prediction of the weldability in the development process of new joining components. In order to provide more precise input data (storage and loss modulus) for describing the material behaviour of thermoplastics in the ultrasonic welding process in the future, a novel measurement concept was implemented that is based on the adaptation of simulation results to real structure-borne sound measurements. The test rig concept was successfully commissioned and calibrated at room temperature and the calculation routine for material data determination was implemented. On the basis of the generated material data, an increase in the prediction quality of the vibration behaviour in a frequency range of 1 Hz to 22.5 kHz of rectangular specimens at room temperature could already be achieved compared to the state of the art using dynamic mechanical analysis and a time–temperature shift approach. Measurements at different ambient temperatures up to 60 °C were also carried out. Although the prediction quality of the vibration behaviour was slightly improved at 60 °C, there is still a need for optimisation with regard to the test specimen geometry and the further development of the evaluation routine in order to increase the analysable temperature range on the one hand and the quality of the generated material data on the other.

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in ultrasonic welding of lightweight alloys: A review;High Temperature Materials and Processes;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3