Robotic welding system for adaptive process control in gas metal arc welding

Author:

Biber A.ORCID,Sharma R.ORCID,Reisgen U.ORCID

Abstract

AbstractChanging process conditions such as distortion, varying seam preparation or gap width during welding is a major challenge in automated gas metal arc welding (GMAW). While human welders can adjust the process during welding (e.g. welding speed, torch orientation), an automated welding system needs sensors to detect and actuators to adjust the process. Adjusting the process in response to changing process conditions is usually referred to as adaptive welding. The aim of this work is to build a robotic welding system capable of automatically adapting the welding process using some of the approaches of a human welder. To enable adaptive process control, a robotic welding system is built. It consists of four main components: a six-axis industrial robot for mechanical guidance of the welding torch, a welding power source, a monochrome visual camera as an image sensor and a process controller that combines the three components. The camera captures images of the weld pool during welding and processes the images to provide geometrical information such as the width of the weld pool and the position of the weld pool front. Changes in the weld pool geometry are quantified, and an adjustment strategy is generated in the process control unit in real time. Process adjustments can be mechanical (e.g. welding speed, torch orientation) and electrical by adjusting synergic process settings (wire feed speed, arc length, process dynamics). Validation tests demonstrate the functionality of the welding system. Two use cases were investigated. Firstly, a deposited weld bead was examined, and variations in the width of the weld pool were induced by varying the welding speed. The second application was a seam tracking application. The path is pre-programmed, and the specimen is positioned with an offset to the path. Compensation for the offset is implemented.

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3